Optica Open
Browse
arXiv.svg (5.58 kB)

Quantum-limited discrimination of laser light and thermal light

Download (5.58 kB)
preprint
posted on 2023-11-30, 19:19 authored by Jonathan L. Habif, Arunkumar Jagannathan, Samuel Gartenstein, Phoebe Amory, Saikat Guha
Understanding the fundamental sensitivity limit of an optical sensor requires a full quantum mechanical description of the sensing task. In this work, we calculate the fundamental (quantum) limit for discriminating between pure laser light and thermal noise in a photon-starved regime. The Helstrom bound for discrimination error probability for single mode measurement is computed along with error probability bounds for direct detection, coherent homodyne detection and the Kennedy receiver. A generalized Kennedy (GK) receiver is shown to closely approach the Helstrom limit. We present an experimental demonstration of this sensing task and demonstrate $15.4$ dB improvement in discrimination sensitivity over direct detection using a GK receiver, and an improvement of $19.4\%$ in error probability over coherent detection.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC