Optica Open
Browse
arXiv.svg (5.58 kB)

Quantum Cascade Surface Emitting Lasers

Download (5.58 kB)
preprint
posted on 2023-08-12, 16:00 authored by David Stark, Filippos Kapsalidis, Sergej Markmann, Mathieu Bertrand, Bahareh Marzban, Emilio Gini, Mattias Beck, Jérôme Faist
A low-cost single frequency laser emitting in the mid-infrared spectral region and dissipating minimal electrical power is a key ingredient for the next generation of portable gas sensors for high-volume applications involving chemical sensing of important greenhouse and pollutant gases. We propose here a Quantum Cascade Surface Emitting Laser (QCSEL), which we implement as a short linear cavity with high reflectivity coated end-mirrors to suppress any edge emission and use a buried semiconductor diffraction grating to extract the light from the surface. By wafer-level testing we investigate the cavity length scaling, extract mirror reflectivities larger than 0.9, and achieve a pulsed threshold power dissipation of 237 mW for an emission wavelength near 7.5 $\mu$m. Finally, we demonstrate single mode emission with a side-mode suppression ratio larger than 33 dB of a 248 $\mu$m short cavity mounted with the epitaxial layer up and operated in continuous wave at 20 $^\circ$C.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC