posted on 2023-11-30, 20:24authored byA. S. Maxwell, A. Serafini, S. Bose, C. Figueira de Morisson Faria
We develop a new framework to optimize and understand uncertainty from in situ strong field measurements of laser field parameters. We present the first derivation of quantum and classical Fisher information for an electron undergoing strong-field ionization. This is used for parameter estimation and to characterize the uncertainty of the ponderomotive energy, directly proportional to laser intensity. In particular, the quantum and classical Fisher information for the momentum basis displays quadratic scaling over time. This can be linked to above-threshold ionization interference rings for measurements in the momentum basis and to the `ponderomotive phase' for the `ideal' quantum measurements. Preferential scaling is found for increasing laser pulse length and intensity. We use this to demonstrate for in situ measurements of laser intensity, that high resolution momentum spectroscopy has the capacity to reduce the uncertainty by over $25$ times compared to measurements employing the ionization rate, while using the `ideal' quantum measurement would reduce it by a further factor of $2.6$. A minimum uncertainty of the order $2.8 \times 10^{-3}~\%$ is theorized for this framework. Finally, we examine previous in situ measurements formulating a measurement that matches the experimental procedure and suggest how to improve this.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.