Optica Open
Browse
arXiv.svg (5.58 kB)

Quantum Experiments and Graphs III: High-Dimensional and Multi-Particle Entanglement

Download (5.58 kB)
preprint
posted on 2023-11-30, 06:47 authored by Xuemei Gu, Lijun Chen, Anton Zeilinger, Mario Krenn
Quantum entanglement plays an important role in quantum information processes, such as quantum computation and quantum communication. Experiments in laboratories are unquestionably crucial to increase our understanding of quantum systems and inspire new insights into future applications. However, there are no general recipes for the creation of arbitrary quantum states with many particles entangled in high dimensions. Here, we exploit a recent connection between quantum experiments and graph theory and answer this question for a plethora of classes of entangled states. We find experimental setups for Greenberger-Horne-Zeilinger states, W states, general Dicke states, and asymmetrically high-dimensional multipartite entangled states. This result sheds light on the producibility of arbitrary quantum states using photonic technology with probabilistic pair sources and allows us to understand the underlying technological and fundamental properties of entanglement.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC