Optica Open
arXiv.svg (5.58 kB)

Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron Nitride

Download (5.58 kB)
posted on 2023-04-01, 16:00 authored by Ali Al-Juboori, Helen Zhi Jie Zeng, Minh Anh Phan Nguyen, Xiaoyu Ai, Arne Laucht, Alexander Solntsev, Milos Toth, Robert Malaney, Igor Aharonovich
Quantum Key Distribution (QKD) is considered the most immediate application to be widely implemented amongst a variety of potential quantum technologies. QKD enables sharing secret keys between distant users, using photons as information carriers. An ongoing endeavour is to implement these protocols in practice in a robust, and compact manner so as to be efficiently deployable in a range of real-world scenarios. Single Photon Sources (SPS) in solid-state materials are prime candidates in this respect. Here, we demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride, operating in free-space. Employing an easily interchangeable photon source system, we have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%, with $\varepsilon$-security of $10^{-10}$. Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.



This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics