posted on 2023-11-30, 18:29authored byI. Peshko, D. Mogilevtsev, I. Karuseichyk, A. Mikhalychev, A. P. Nizovtsev, G. Ya. Slepyan, A. Boag
We suggest overcoming the "Rayleigh catastrophe" and reaching superresolution for imaging with both spatially and temporally-correlated field of a superradiant quantum antenna. Considering far-field radiation of two interacting spontaneously emitting two-level systems, we show that for the measurement of the temporally-delayed second-order correlation function of the scattered field, the Fisher information does not tend to zero with diminishing the distance between a pair of scatterers even for non-sharp time-averaged detection. For position estimation of a larger number of scatterers, measurement of the time-delayed function is able to provide a considerable accuracy gain over the zero-delayed function. We show also that the superresolution with the considered quantum antenna can be achieved for both near-field imaging and estimating parameters of the antenna.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.