Optica Open
Browse

Quantum vortices of strongly interacting photons

Download (5.58 kB)
preprint
posted on 2023-02-15, 17:00 authored by Lee Drori, Bankim Chandra Das, Tomer Danino Zohar, Gal Winer, Eilon Poem, Alexander Poddubny, Ofer Firstenberg
Vortices are a hallmark of topologically nontrivial dynamics in nonlinear physics and arise in a huge variety of systems, from space and atmosphere to condensed matter and quantum gases. In optics, vortices manifest as phase twists of the electromagnetic field, commonly formed by the interaction of light and matter. Formation of vortices by effective interaction of light with itself requires strong optical nonlinearity and has therefore been confined, until now, to the classical regime. Here we report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium. The interaction causes faster phase accumulation for co-propagating photons. Similarly to a plate pushing water, the local phase accumulation produces a quantum vortex-antivortex pair within the two-photon wavefunction. For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction. The wavefunction topology, governed by two- and three-photon bound states, imposes a conditional phase shift of $\pi$-per-photon, a potential resource for deterministic quantum logic operations.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC