Optica Open
Browse
- No file added yet -

Raman fingerprints of ultrasmall nanodiamonds produced from adamantane

Download (5.58 kB)
preprint
posted on 2023-01-12, 15:54 authored by O. S. Kudryavtsev, R. H. Bagramov, A. M. Satanin, O. I. Lebedev, D. G. Pasternak, V. P. Filonenko, I. I. Vlasov
The synthesis of ultrasmall (2-5 nm) nanodiamonds purely from adamantane at pressure of 12 GPa is reported. Their structural features have been studied by Raman spectroscopy. The unusual vibration band containing a number of pronounced maxima at about 1147, 1245, 1344, and 1456 cm-1 was detected in Raman spectra. The band is confidently identified with the bending vibrational modes of CHx groups terminating the nanodiamonds surface. Excessively intense mode at 1344 cm-1 is explained by its coupling with the 1328 cm-1 diamond phonons. The Raman band found is proposed to be used for express recognition of ultrasmall nanodiamonds produced from adamantane and other hydrocarbons with a high hydrogen content. Moreover, polarized CH bonds on a diamond surface are sensitive to environmental conditions. This opens up opportunities for using the diamond produced from adamantane as ultrasmall nanosensors in biology, chemistry, and medicine

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC