Optica Open
Browse

Rapid Trapping and Label-free Characterization of Single Nanoscale Extracellular Vesicles and Nanoparticles in Solution

Download (5.58 kB)
preprint
posted on 2024-12-04, 17:00 authored by Ikjun Hong, Chuchuan Hong, Theodore Anyika, Guodong Zhu, Maxwell Ugwu, Jeff Franklin, Robert Coffey, Justus C. Ndukaife
Achieving high-throughput, comprehensive analysis of single nanoparticles to determine their size, shape, and composition is essential for understanding particle heterogeneity with applications ranging from drug delivery to environmental monitoring. Existing techniques are hindered by low throughput, lengthy trapping times, irreversible particle adsorption, or limited characterization capabilities. Here, we introduce Interferometric Electrohydrodynamic Tweezers (IET), an integrated platform that rapidly traps single nanoparticles in parallel within three seconds. IET enables label-free characterization of particle size and shape via interferometric imaging and identifies molecular composition through Raman spectroscopy, all without the need for fluorescent labeling. We demonstrate the platform's capabilities by trapping and imaging colloidal polymer beads, nanoscale extracellular vesicles (EVs), and newly discovered extracellular nanoparticles known as supermeres. By monitoring their interferometric contrast images while trapped, we accurately determine the sizes of EVs and supermeres. Our IET represents a powerful optofluidics platform for comprehensive characterization of nanoscale objects, opening new avenues in nanomedicine, environmental monitoring, and beyond.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC