Optica Open
Browse

Rayleigh-Jeans condensation of classical light : Observation and thermodynamic characterization

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:13 authored by K. Baudin, A. Fusaro, K. Krupa, J. Garnier, S. Rica, G. Millot, A. Picozzi
Theoretical studies on wave turbulence predict that a purely classical system of random waves can exhibit a process of condensation, in analogy with the quantum Bose-Einstein condensation. We report the experimental observation of the transition to condensation of classical optical waves propagating in a multimode fiber, i.e., in a conservative Hamiltonian system without thermal heat bath. In contrast to conventional self-organization processes featured by the non-equilibrium formation of nonlinear coherent structures (solitons, vortices...), here the self-organization originates in the equilibrium Rayleigh-Jeans statistics of classical waves. The experimental results show that the chemical potential reaches the lowest energy level at the transition to condensation, which leads to the macroscopic population of the fundamental mode of the optical fiber. The near-field and far-field measurements of the condensate fraction across the transition to condensation are in quantitative agreement with the Rayleigh-Jeans theory. The thermodynamics of classical wave condensation reveals that, in opposition to quantum Bose-Einstein condensation, the heat capacity takes a constant value in the condensed state and tends to vanish above the transition in the normal state. Our experiments provide the demonstration of a coherent phenomenon of self-organization that is exclusively driven by the statistical equilibrium properties of classical light waves.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC