Optica Open
Browse

Real-Time Tracking of Coherent Oscillations of Electrons in a Nanodevice by Photo-assisted Tunnelling

Download (5.58 kB)
preprint
posted on 2023-03-31, 16:01 authored by Yang Luo, Frank Neubrech, Alberto Martin-Jimenez, Na Liu, Klaus Kern, Manish Garg
Coherent collective oscillations of electrons excited in metallic nanostructures (localized surface plasmons) can confine incident light to atomic scales and enable strong light-matter interactions, which depend nonlinearly on the local field. Direct sampling of such collective electron oscillations in real-time is crucial to performing petahertz scale optical modulation, control, and readout in a quantum nanodevice. Here, we demonstrate real-time tracking of collective electron oscillations in an Au bowtie nanoantenna, by recording photo-assisted tunnelling currents generated by such oscillations in this quantum nanodevice. The collective electron oscillations show a noninstantaneous response to the driving laser fields with a decay time of nearly 10 femtoseconds. The temporal evolution of nonlinear electron oscillations resulting from the coherent nonlinear optical response of the nanodevice were also traced in real-time. The contributions of linear and nonlinear electron oscillations in the generated tunnelling currents in the nanodevice were precisely determined. A coherent control of electron oscillations in the nanodevice is illustrated directly in the time domain. Functioning in ambient conditions, the excitation, coherent control, and read-out of coherent electron oscillations pave the way toward on-chip light-wave electronics in quantum nanodevices.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC