posted on 2023-11-30, 18:17authored byNariyuki Saito, Hiroki Sannohe, Nobuhisa Ishii, Teruto Kanai, Nobuhiro Kosugi, Yi Wu, Andrew Chew, Seunghwoi Han, Zenghu Chang, Jiro Itatani
Photoinduced quantum dynamics in molecules have hierarchical temporal structures with different energy scales that are associated with electron and nuclear motions. Femtosecond-to-attosecond transient absorption spectroscopy (TAS) using high-harmonic generation (HHG) with a photon energy below 300 eV has been a powerful tool to observe such electron and nuclear dynamics in a table-top manner. However, comprehensive measurements of the electronic, vibrational, and rotational molecular dynamics have not yet been achieved. Here, we demonstrate HHG-based TAS at the nitrogen K-edge (400 eV) for the first time, and observe all the electronic, vibrational, and rotational degrees of freedom in a nitric oxide molecule at attosecond to sub-picosecond time scales. This method of employing core-to-valence transitions offers an all-optical approach to reveal complete molecular dynamics in photochemical reactions with element and electronic state specificity.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.