Optica Open
Browse

Real-time phase-retrieval and wavefront sensing enabled by an artificial neural network

Download (5.58 kB)
preprint
posted on 2023-01-11, 21:47 authored by Jonathon White, Sici Wang, Wilhelm Eschen, Jan Rothhardt
In this manuscript we demonstrate a method to reconstruct the wavefront of focused beams from a measured diffraction pattern behind a diffracting mask in real-time. The phase problem is solved by means of a neural network, which is trained with simulated data and verified with experimental data. The neural network allows live reconstructions within a few milliseconds, which previously with iterative phase retrieval took several seconds, thus allowing the adjustment of complex systems and correction by adaptive optics in real time. The neural network additionally outperforms iterative phase retrieval with high noise diffraction patterns.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC