Optica Open
Browse
- No file added yet -

Realizing coherently convertible dual-type qubits with the same ion species

Download (5.58 kB)
preprint
posted on 2023-01-11, 23:09 authored by H. -X. Yang, J. -Y. Ma, Y. -K. Wu, Y. Wang, M. -M. Cao, W. -X. Guo, Y. -Y. Huang, L. Feng, Z. -C. Zhou, L. -M. Duan
Trapped ions constitute one of the most promising systems for implementing quantum computing and networking. For large-scale ion-trap-based quantum computers and networks, it is critical to have two types of qubits, one for computation and storage, while the other for auxiliary operations like runtime qubit detection, sympathetic cooling, and repetitive entanglement generation through photon links. Dual-type qubits have previously been realized in hybrid systems using two ion species, which, however, introduces significant experimental challenges for laser setup, gate operations as well as the control of the fraction and positioning of each qubit type within an ion crystal. Here we solve these problems by implementing two coherently-convertible qubit types using the same ion species. We encode the qubits into two pairs of clock states of the 171Yb+ ions, and achieve fast and high-fidelity conversion between the two types using narrow-band lasers. We further demonstrate that operations on one qubit type, including sympathetic laser cooling, gates and qubit detection, have crosstalk errors less than 0.03% on the other type, well below the error threshold for fault-tolerant quantum computing. Our work showcases the feasibility and advantages of using coherently convertible dual-type qubits with the same ion species for future large-scale quantum computing and networking.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC