Optica Open
Browse

Recent advances in supercontinuum generation in specialty optical fibers [Invited]

Download (5.58 kB)
Version 2 2023-06-08, 12:49
Version 1 2023-01-12, 14:24
preprint
posted on 2023-06-08, 12:49 authored by T. Sylvestre, E. Genier, A. N. Ghosh, P. Bowen, G. Genty, J. Troles, A. Mussot, A. C. Peacock, M. Klimczak, A. M. Heidt, J. C. Travers, O. Bang, J. M. Dudley
The physics and applications of fiber-based supercontinuum (SC) sources have been a subject of intense interest over the last decade, with significant impact on both basic science and industry. New uses for SC sources are also constantly emerging due to their unique properties that combine high brightness, multi-octave frequency bandwidth, fiber delivery, and single-mode output. The last few years have seen significant research efforts focused on extending the wavelength coverage of SC sources towards the 2 to 20 $\mu$m molecular fingerprint mid-infrared (MIR) region and in the ultraviolet (UV) down to 100 nm, while also improving stability, noise and coherence, output power, and polarization properties. Here we review a selection of recent advances in SC generation in a range of specialty optical fibers, including fluoride, chalcogenide, telluride, and silicon-core fibers for the MIR; UV-grade silica fibers and gas-filled hollow-core fibers for the UV range; and all-normal dispersion fibers for ultralow-noise coherent SC generation.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC