Optica Open
Browse
arXiv.svg (5.58 kB)

Reconstruction of attosecond beating by interference of two-photon transitions in bulk solids

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:30 authored by Álvaro Jiménez-Galán, Rui E. F. Silva, Misha Ivanov
The reconstruction of attosecond beating by interference of two-photon transitions (RABBIT) is one of the most widely used techniques for resolving ultrafast electronic dynamics in atomic and molecular systems. As it relies on the interference of photo-electrons in vacuum, similar interference has never been contemplated in the bulk of crystals. Here we show that the interference of two-photon transitions can be recorded directly in the bulk of solids and read out with standard angle-resolved photo-emission spectroscopy. The phase of the RABBIT beating in the photoelectron spectra coming from the bulk of solids is sensitive to the relative phase of the Berry connection between bands and it experiences a shift of $\pi$ as one of the quantum paths crosses a band. For resonant interband transitions, the amplitude of the RABBIT oscillation decays as the pump and probe pulses are separated in time due to electronic decoherence, providing a simple interferometric method to extract dephasing times.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC