Optica Open
Browse

Reinforcement Learning for Photonic Component Design

Download (5.58 kB)
preprint
posted on 2023-07-22, 16:00 authored by Donald Witt, Jeff Young, Lukas Chrostowski
We present a new fab-in-the-loop reinforcement learning algorithm for the design of nano-photonic components that accounts for the imperfections present in nanofabrication processes. As a demonstration of the potential of this technique, we apply it to the design of photonic crystal grating couplers (PhCGC) fabricated on a 220nm silicon on insulator (SOI) single etch platform. This fab-in-the-loop algorithm improves the insertion loss from 8.8 dB to 3.24 dB. The widest bandwidth designs produced using our fab-in-the-loop algorithm are able to cover a 150nm bandwidth with less than 10.2 dB of loss at their lowest point.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC