Optica Open
Browse

Response to polarization and weak topology in Chern insulators

Download (5.58 kB)
preprint
posted on 2023-04-28, 16:01 authored by Sachin Vaidya, Mikael C. Rechtsman, Wladimir A. Benalcazar
Chern insulators present a topological obstruction to a smooth gauge in their Bloch wave functions that prevents the construction of exponentially-localized Wannier functions - this makes the electric polarization ill-defined. Here, we show that spatial or temporal differences in polarization within Chern insulators are well-defined and physically meaningful because they account for bound charges and adiabatic currents. We further show that the difference in polarization across Chern-insulator regions can be quantized in the presence of crystalline symmetries, leading to "weak" symmetry-protected topological phases. These phases exhibit charge fractional quantization at the edge and corner interfaces and with concomitant topological states. We also generalize our findings to quantum spin-Hall insulators and 3D topological insulators. Our work settles a long-standing question and deems the bulk polarization as the fundamental quantity with a "bulk-boundary correspondence", regardless of whether a Wannier representation is possible.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC