Optica Open
Browse
arXiv.svg (5.58 kB)

Robust three-dimensional high-order solitons and breathers in driven dissipative systems: a Kerr cavity realization

Download (5.58 kB)
preprint
posted on 2023-01-10, 03:36 authored by Yifan Sun, Pedro Parra-Rivas, Carles Milian, Yaroslav V. Kartashov, Mario Ferraro, Fabio Mangini, Mario Zitelli, Raphael Jauberteau, Francesco R. Talenti, Stefan Wabnitz
We present a general approach to excite robust dissipative three-dimensional and high-order solitons and breathers in passively driven nonlinear cavities. Our findings are illustrated in the paradigmatic example provided by an optical Kerr cavity with diffraction and anomalous dispersion, with the addition of an attractive three-dimensional parabolic potential. The potential breaks the translational symmetry along all directions, and impacts the system in a qualitatively unexpected manner: three-dimensional solitons, or light-bullets, are the only existing and stable states for a given set of parameters. This property is extremely rare, if not unknown, in passive nonlinear physical systems. As a result, the excitation of the cavity with any input field leads to the deterministic formation of a target soliton or breather, with a spatiotemporal profile that unambiguously corresponds to the given cavity and pumping conditions. In addition, the tuning of the potential width along the temporal direction results in the existence of a plethora of stable asymmetric solitons. Our results may provide a solid route towards the observation of dissipative light bullets and three-dimensional breathers.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC