posted on 2023-01-10, 02:18authored byKritika Jain, Murugesan Venkatapathi
The modified radiative and non-radiative states due to the weak coupling of an emitter with other resonant objects (Purcell effect), can be recast as a quantum interference of the paths of the photon that define the classical scattering and absorption by the object. When the coupling is stronger, additional paths representing the (Rabi oscillations or) possible re-absorption of the photon from the excited object, by the emitter at ground-state, have to be included in the quantum interference. The effect of these additional Rabi paths of the photon on the radiative states and the efficiency of spontaneous emission, can be approximated using a simple one-loop correction to the weak-coupling approximation. This effect is especially evident in the anomalous enhancements of emission due to extremely small non-scattering (or fully absorbing) metal nanoparticles less than 10 nm in dimensions. Extending these corrections to a collective model of spontaneous emission that includes multiple emitters and such very small metal nanoparticles coupled to each other, the large contribution of Rabi paths to radiative decay in such bulk materials is elucidated.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.