Optica Open
Browse

Role of Spatial Coherence in Diffractive Optical Neural Networks

Download (5.58 kB)
preprint
posted on 2023-10-07, 16:00 authored by Matthew J. Filipovich, Aleksei Malyshev, A. I. Lvovsky
Diffractive optical neural networks (DONNs) have emerged as a promising optical hardware platform for ultra-fast and energy-efficient signal processing for machine learning tasks, particularly in computer vision. Previous experimental demonstrations of DONNs have only been performed using coherent light. However, many real-world DONN applications require consideration of the spatial coherence properties of the optical signals. Here, we study the role of spatial coherence in DONN operation and performance. We propose a numerical approach to efficiently simulate DONNs under incoherent and partially coherent input illumination and discuss the corresponding computational complexity. As a demonstration, we train and evaluate simulated DONNs on the MNIST dataset of handwritten digits to process light with varying spatial coherence.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC