Optica Open
Browse

Room-temperature biphoton source with a spectral brightness near the ultimate limit

Download (5.58 kB)
preprint
posted on 2023-01-12, 14:02 authored by Jia-Mou Chen, Chia-Yu Hsu, Wei-Kai Huang, Shih-Si Hsiao, Fu-Chen Huang, Yi-Hsin Chen, Chih-Sung Chuu, Ying-Cheng Chen, Yong-Fan Chen, Ite A. Yu
The biphotons, generated from a hot atomic vapor via the process of spontaneous four-wave mixing (SFWM), have the following merits: stable and tunable frequencies as well as linewidth. Such merits are very useful in the applications of long-distance quantum communication. However, the hot-atom SFWM biphoton sources previously had far lower values of generation rate per linewidth, i.e., spectral brightness, as compared with the sources of biphotons generated by the spontaneous parametric down conversion (SPDC) process. Here, we report a hot-atom SFWM source of biphotons with a linewidth of 960 kHz and a generation rate of 3.7$\times$ $10^5$ pairs/s. The high generation rate, together with the narrow linewidth, results in a spectral brightness of 3.8$\times$ $10^5$ pairs/s/MHz, which is 17 times of the previous best result with atomic vapors and also better than all known results with all kinds of media. The all-copropagating scheme together with a large optical depth (OD) of the atomic vapor is the key improvement, enabling the achieved spectral brightness to be about one quarter of the ultimate limit. Furthermore, this biphoton source had a signal-to-background ratio (SBR) of 2.7, which violated the Cauchy-Schwartz inequality for classical light by about 3.6 folds. Although an increasing spectral brightness usually leads to a decreasing SBR, our systematic study indicates that both of the present spectral brightness and SBR can be enhanced by further increasing the OD. This work demonstrates a significant advancement and provides useful knowledge in the quantum technology using photons.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC