posted on 2023-11-30, 17:17authored byOren Solomon, Yonina C. Eldar, Maor Mutzafi, Mordechai Segev
In traditional optical imaging systems, the spatial resolution is limited by the physics of diffraction, which acts as a low-pass filter. The information on sub-wavelength features is carried by evanescent waves, never reaching the camera, thereby posing a hard limit on resolution: the so-called diffraction limit. Modern microscopic methods enable super-resolution, by employing florescence techniques. State-of-the-art localization based fluorescence subwavelength imaging techniques such as PALM and STORM achieve sub-diffraction spatial resolution of several tens of nano-meters. However, they require tens of thousands of exposures, which limits their temporal resolution. We have recently proposed SPARCOM (sparsity based super-resolution correlation microscopy), which exploits the sparse nature of the fluorophores distribution, alongside a statistical prior of uncorrelated emissions, and showed that SPARCOM achieves spatial resolution comparable to PALM/STORM, while capturing the data hundreds of times faster. Here, we provide a detailed mathematical formulation of SPARCOM, which in turn leads to an efficient numerical implementation, suitable for large-scale problems. We further extend our method to a general framework for sparsity based super-resolution imaging, in which sparsity can be assumed in other domains such as wavelet or discrete-cosine, leading to improved reconstructions in a variety of physical settings.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.