Optica Open
Browse
- No file added yet -

Scalable and efficient grating couplers on low-index photonic platforms enabled by cryogenic deep silicon etching

Download (5.58 kB)
preprint
posted on 2023-05-03, 16:01 authored by Emma Lomonte, Maik Stappers, Linus Krämer, Wolfram H. P. Pernice, Francesco Lenzini
Efficient fiber-to-chip couplers for multi-port access to photonic integrated circuits are paramount for a broad class of applications, ranging, e.g., from telecommunication to photonic computing and quantum technologies. While grating-based approaches are convenient for out-of-plane access and often desirable from a packaging point of view, on low-index photonic platforms, such as silicon nitride or thin-film lithium niobate, the limited grating strength has thus far hindered the achievement of coupling efficiencies comparable to the ones attainable in silicon photonics. Here we present a flexible strategy for the realization of highly efficient grating couplers on low-index photonic platforms. To simultaneously reach a high scattering efficiency and a near-unitary modal overlap with optical fibers, we make use of self-imaging gratings designed with a negative diffraction angle. To ensure high directionality of the diffracted light, we take advantage of a metal back-reflector patterned underneath the grating structure by cryogenic deep reactive ion etching of the silicon handle. Using silicon nitride as a testbed material, we experimentally demonstrate coupling efficiency up to -0.55 dB in the telecom C-band with near unity chip-scale device yield.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC