Version 2 2023-06-08, 12:57Version 2 2023-06-08, 12:57
Version 1 2023-01-12, 16:08Version 1 2023-01-12, 16:08
preprint
posted on 2023-06-08, 12:57authored byJoohoon Kim, Junhwa Seong, Wonjoong Kim, Gun-Yeal Lee, Hongyoon Kim, Seong-Won Moon, Jaehyuck Jang, Yeseul Kim, Younghwan Yang, Dong Kyo Oh, Chanwoong Park, Hojung Choi, Hyeongjin Jeon, Kyung-Il Lee, Byoungho Lee, Heon Lee, Junsuk Rho
Metalenses, which exhibit superior light-modulating performance with sub-micrometer-scale thicknesses, are suitable alternatives to conventional bulky refractive lenses. However, fabrication limitations, such as a high cost, low throughput, and small patterning area, hinder their mass production. Here, we demonstrate the mass production of low-cost, high-throughput, and large-aperture visible metalenses using an argon fluoride immersion scanner and wafer-scale nanoimprint lithography. Once a 12-inch master stamp is imprinted, hundreds of centimeter-scale metalenses can be fabricated. To enhance light confinement, the printed metasurface is thinly coated with a high-index film, resulting in drastic increase of conversion efficiency. As a proof of concept, a prototype of a virtual reality device with ultralow thickness is demonstrated with the fabricated metalens.