Optica Open
Browse

Seeded x-ray free-electron laser generating radiation with laser statistical properties

Download (5.58 kB)
preprint
posted on 2023-11-30, 06:03 authored by O. Yu. Gorobtsov, G. Mercurio, F. Capotondi, P. Skopintsev, S. Lazarev, I. A. Zaluzhnyy, M. Danailov, M. Dell`Angela, M. Manfredda, E. Pedersoli, L. Giannessi, M. Kiskinova, K. C. Prince, W. Wurth, I. A. Vartanyants
The invention of optical lasers led to a revolution in the field of optics and even to the creation of completely new fields of research such as quantum optics. The reason was their unique statistical and coherence properties. The newly emerging, short-wavelength free-electron lasers (FELs) are sources of very bright coherent extreme-ultraviolet (XUV) and x-ray radiation with pulse durations on the order of femtoseconds, and are presently considered to be laser sources at these energies. Most existing FELs are highly spatially coherent but in spite of their name, they behave statistically as chaotic sources. Here, we demonstrate experimentally, by combining Hanbury Brown and Twiss (HBT) interferometry with spectral measurements that the seeded XUV FERMI FEL-2 source does indeed behave statistically as a laser. The first steps have been taken towards exploiting the first-order coherence of FELs, and the present work opens the way to quantum optics experiments that strongly rely on high-order statistical properties of the radiation.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC