Optica Open
Browse
- No file added yet -

Self-Powered Broadband Photodetector Based on MoS2/Sb2Te3 Heterojunctions: A promising approach for highly sensitive detection

Download (5.58 kB)
preprint
posted on 2023-01-12, 15:53 authored by Hao Wang, Yaliang Gui, Chaobo Dong, Salem Altaleb, Behrouz Movahhed Nouri, Martin Thomaschewski, Hamed Dalir, Volker J. Sorger
Topological insulators have shown great potential for future optoelectronic technology due to their extraordinary optical and electrical properties. Photodetectors, as one of the most widely used optoelectronic devices, are crucial for sensing, imaging, communication, and optical computing systems to convert optical signals to electrical signals. Here we experimentally show a novel combination of topological insulators (TIs) and transition metal chalcogenides (TMDs) based self-powered photodetectors with ultra-low dark current and high sensitivity. The photodetector formed by a MoS2/Sb2Te3 heterogeneous junction exhibits a low dark current of 2.4 pA at zero bias and 1.2 nA at 1V. It shows a high photoresponsivity of > 150 mA W-1 at zero bias and rectification of 3 times at an externally applied bias voltage of 1V. The excellent performance of the proposed photodetector with its innovative material combination of TMDs and TIs paves the way for the development of novel high-performance optoelectronic devices. The TIs/TMDs transfer used to form the heterojunction is simple to incorporate into on-chip waveguide systems, enabling future applications on highly integrated photonic circuits.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC