Optica Open
Browse
arXiv.svg (5.58 kB)

Self-organized synchronization of mechanically coupled resonators based on optomechanics gain-loss balance

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:09 authored by P. Djorwé, Y. Pennec, B. Djafari-Rouhani
We investigate collective nonlinear dynamics in a blue-detuned optomechanical cavity that is mechanically coupled to an undriven mechanical resonator. By controlling the strength of the driving field, we engineer a mechanical gain that balances the losses of the undriven resonator. This gain-loss balance corresponds to the threshold where both coupled mechanical resonators enter simultaneously into self-sustained limit cycle oscillations regime. Rich sets of collective dynamics such as in-phase and out-of-phase synchronizations therefore emerge, depending on the mechanical coupling rate, the optically induced mechanical gain and spring effect, and the frequency mismatch between the resonators. Moreover, we introduce the quadratic coupling that induces enhancement of the in-phase synchronization. This work shows how phonon transport can remotely induce synchronization in coupled mechanical resonator array and opens up new avenues for metrology, communication, phonon-processing, and novel memories concepts.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC