Optica Open
Browse
- No file added yet -

Sensitivity and accuracy of Casimir force measurements in air

Download (5.58 kB)
preprint
posted on 2023-11-29, 05:06 authored by Joseph L. Garrett, David A. T. Somers, Kyle Sendgikoski, Jeremy N. Munday
Quantum electrodynamic fluctuations cause an attractive force between metallic surfaces. At separations where the finite speed of light affects the interaction, it is called the Casimir force. Thermal motion determines the fundamental sensitivity limits of its measurement at room temperature, but several other systematic errors contribute uncertainty as well and become more significant in air relative to vacuum. Here we discuss the viability of several measurement techniques in air (force modulation, frequency modulation, and quasi-static deflection), characterize their sensitivity and accuracy by identifying several dominant sources of uncertainty, and compare the results to the fundamental sensitivity limits dictated by thermal motion and to the uncertainty inherent to calculations of the Casimir force. Finally, we explore prospects for mitigating the sources of uncertainty to enhance the range and accuracy of Casimir force measurements.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC