Optica Open
Browse

Si microring resonator crossbar array for on-chip inference and training of optical neural network

Download (5.58 kB)
preprint
posted on 2023-01-11, 22:58 authored by Shuhei Ohno, Kasidit Toprasertpong, Shinichi Takagi, Mitsuru Takenaka
Deep learning is one of the most advancing technologies in various fields. Facing the limits of the current electronics platform, optical neural networks (ONNs) based on Si programmable photonic integrated circuits (PICs) have attracted considerable attention as a novel deep learning scheme with optical-domain matrix-vector multiplication (MVM). However, most of the proposed Si programmable PICs for ONNs have several drawbacks such as low scalability, high power consumption, and lack of frameworks for training. To address these issues, we have proposed a microring resonator (MRR) crossbar array as a Si programmable PIC for an ONN. In this article, we present a prototype of a fully integrated 4 ${\rm \times}$ 4 MRR crossbar array and demonstrated a simple MVM and classification task. Moreover, we propose on-chip backpropagation using the transpose matrix operation of the MRR crossbar array, enabling the on-chip training of the ONN. The proposed ONN scheme can establish a scalable, power-efficient deep learning accelerator for applications in both inference and training tasks.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC