posted on 2024-11-27, 17:00authored byKirtan P. Dixit, Don A. Gregory
Subwavelength-scale light absorbers and reflectors have gained significant attention for their potential in photonic applications. These structures often utilize a metal-insulator-metal (MIM) architecture, similar to a Fabry-Perot nanocavity, using noble metals and dielectric or semiconductor spacers for narrow-band light absorption. In reflection mode, they function as band-stop filters, blocking specific wavelengths and reflecting others through Fabry-Perot resonance. Efficient color reflection requires asymmetric Fabry-Perot cavities, where metals with differing reflectivities and extinction coefficients enable substantial reflection for non-resonant wavelengths and near-perfect absorption at resonant ones. Unlike narrowband techniques, broadband absorption does not rely on a single resonance phenomenon. Recent developments show that integrating an asymmetric Fabry-Perot nanocavity with an anti-reflection coating achieves near-unity absorption across a broad wavelength range. This study introduces an asymmetric Fabry-Perot nanocavity with a dielectric-semiconductor-dielectric spacer, enabling near-unity color reflection. By incorporating silicon, the reflected color can be tuned with just a 5 nm thickness variation, while achieving broadband absorption over 70% in the 800-1600 nm range. The addition of an anti-reflection coating extends broadband absorption to near unity with minimal impact on reflected color. The planar, nanopattern-free design holds promise for display technologies with better color fidelity and applications in thermal photovoltaics.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.