Optica Open
Browse

Simultaneous ground-state cooling of multiple degenerate mechanical modes through cross-Kerr effect

Download (5.58 kB)
preprint
posted on 2023-01-12, 16:06 authored by Pengyu Wen, Xuan Mao, Min Wang, Chuan Wang, Gui-Qin Li, Gui-Lu Long
Simultaneous ground-state cooling of multiple degenerate mechanical modes is a tough issue in optomechanical system due to the existence of the dark mode effect. Here we propose a universal and scalable method to break the dark mode effect of two degenerate mechanical modes by introducing the cross-Kerr (CK) nonlinearity. At most four stable steady states can be achieved in our scheme in the presence of the CK effect, different from the bistable behavior of the standard optomechanical system. Under the constant input laser power, the effective detuning and mechanical resonant frequency can be modulated by the CK nonlinearity, which results in an optimal CK coupling strength for cooling. Similarly, there will be an optimal input laser power for cooling when the CK coupling strength stays fixed. Our scheme can be extended to break the dark mode effect of multiple degenerate mechanical modes by introducing more than one CK effects. To fulfill the requirement of the simultaneous ground-state cooling of N multiple degenerate mechanical modes N-1 CK effects with different strengths are needed. Our proposal provides new insights in dark mode control and might pave the way to manipulating of multiple quantum states in macroscopic system.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC