Optica Open
Browse

Single-Shot Phase Diversity Wavefront Sensing in Deep Turbulence via Metasurface Optics

Download (5.58 kB)
preprint
posted on 2024-10-26, 16:00 authored by Arturo Martin Jimenez, Marc Baltes, Jackson Cornelius, Neset Akozbek, Zachary Coppens
Free-space optical communication (FSOC) systems offer high-bandwidth and secure communication with minimal capital costs. Adaptive optics (AO) are typically added to these systems to decrease atmospheric channel losses; however, the performance of traditional AO wavefront sensors degrades in long-range, deep turbulence conditions. Alternative wavefront sensors using phase diversity can successfully reconstruct wavefronts in deep turbulence, but current implementations require bulky setups with high latency. In this work, we employ a nanostructured birefringent metasurface optic that enables low-latency phase diversity wavefront sensing in a compact form factor. We prove the effectiveness of this approach in mid-to-high turbulence (Rytov numbers from 0.2 to 0.6) through simulation and experimental demonstration. In both cases an average 16-fold increase in signal from the corrected beam is obtained. Our approach opens a pathway for compact, robust wavefront sensing that enhances range and accuracy of FSOC systems.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC