Optica Open
Browse
arXiv.svg (5.58 kB)

Single-molecule-resolution ultrafast near-field optical microscopy via plasmon lifetime extension

Download (5.58 kB)
preprint
posted on 2023-11-30, 20:04 authored by Rasim Volga Ovali, Ramazan Sahin, Alpan Bek, Mehmet Emre Tasgin
A recent study shows that: when a long lifetime particle is positioned near a plasmonic metal nanoparticle, lifetime of plasmon oscillations extends, but, "only" near that long-life particle [PRB 101, 035416 (2020)]. Here, we show that this phenomenon can be utilized for ultrahigh (single-molecule) resolution ultrafast apertureless (scattering) SNOM applications. We use the exact solutions of 3D Maxwell equations. We illuminate a metal-coated silicon tip, a quantum emitter (QE) placed on the tip apex, with a femtosecond laser. The induced near-field in the apex decays rapidly except in the vicinity of the sub-nm-sized QE. Thus, the resolution becomes solely limited by the size of the QE. As positioning of a QE on the tip apex is challenging, we propose the use of a newly-discovered phenomenon; stress-induced defect formation in 2D materials. When a monolayer, e.g., transition metal dichalcogenide (TMD) is transferred to the AFM tip, the tip indentation of 2D TMD originates a defect-center located right at the sharpest point of the tip; that is exactly at its apex. Moreover, the resonance of the defect is tunable via a voltage applied to the tip. Our method can equally be used for background-noise-free nonlinear imaging and for facilitating single-molecule-size chemical manipulation.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC