Optica Open
Browse

Single-photon light emitting diodes based on pre-selected quantum dots using a deterministic lithography technique

Download (5.58 kB)
preprint
posted on 2023-11-30, 17:54 authored by Marc Sartison, Simon Seyfferle, Sascha Kolatschek, Stefan Hepp, Michael Jetter, Peter Michler, Simone Luca Portalupi
In the present study, we developed a fabrication process of an electrically driven single-photon LED based on InP QDs emitting in the red spectral range, the wavelength of interest coinciding with the high efficiency window of Si APDs. A deterministic lithography technique allowed for the pre-selection of a suitable QD, here exclusively operated under electrical carrier injection. The final device was characterized under micro-electroluminescence in direct current, as well as in pulsed excitation mode. In particular, under pulsed excitation of one device, single-photon emission of a spectral line, identified as an exciton, has been observed with $g^{(2)}_\mathrm{raw}(0)=0.42\pm0.02$, where the non-zero $g^{(2)}$-value is mainly caused by background contribution in the spectrum and re-excitation processes due to the electrical pulse length. The obtained results constitute an important step forward in the fabrication of electrically driven single-photon sources, where deterministic lithography techniques can be used to sensibly improve the device performances. In principle, the developed process can be extended to any desired emitter wavelength above $600\,\mathrm{nm}$ up to the telecom bands.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC