Optica Open
arXiv.svg (5.58 kB)

Single chip photonic deep neural network with accelerated training

Download (5.58 kB)
posted on 2023-01-12, 15:59 authored by Saumil Bandyopadhyay, Alexander Sludds, Stefan Krastanov, Ryan Hamerly, Nicholas Harris, Darius Bunandar, Matthew Streshinsky, Michael Hochberg, Dirk Englund
As deep neural networks (DNNs) revolutionize machine learning, energy consumption and throughput are emerging as fundamental limitations of CMOS electronics. This has motivated a search for new hardware architectures optimized for artificial intelligence, such as electronic systolic arrays, memristor crossbar arrays, and optical accelerators. Optical systems can perform linear matrix operations at exceptionally high rate and efficiency, motivating recent demonstrations of low latency linear algebra and optical energy consumption below a photon per multiply-accumulate operation. However, demonstrating systems that co-integrate both linear and nonlinear processing units in a single chip remains a central challenge. Here we introduce such a system in a scalable photonic integrated circuit (PIC), enabled by several key advances: (i) high-bandwidth and low-power programmable nonlinear optical function units (NOFUs); (ii) coherent matrix multiplication units (CMXUs); and (iii) in situ training with optical acceleration. We experimentally demonstrate this fully-integrated coherent optical neural network (FICONN) architecture for a 3-layer DNN comprising 12 NOFUs and three CMXUs operating in the telecom C-band. Using in situ training on a vowel classification task, the FICONN achieves 92.7% accuracy on a test set, which is identical to the accuracy obtained on a digital computer with the same number of weights. This work lends experimental evidence to theoretical proposals for in situ training, unlocking orders of magnitude improvements in the throughput of training data. Moreover, the FICONN opens the path to inference at nanosecond latency and femtojoule per operation energy efficiency.



This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics



    Ref. manager