Optica Open
Browse
arXiv.svg (5.58 kB)

Smart Machine Vision for Universal Spatial Mode Reconstruction

Download (5.58 kB)
preprint
posted on 2023-07-26, 16:00 authored by José D. Huerta-Morales, Chenglong You, Omar S. Magaña-Loaiza, Shi-Hai Dong, Roberto de J. León-Montiel, Mario A. Quiroz-Juárez
Structured light beams, in particular those carrying orbital angular momentum (OAM), have gained a lot of attention due to their potential for enlarging the transmission capabilities of communication systems. However, the use of OAM-carrying light in communications faces two major problems, namely distortions introduced during propagation in disordered media, such as the atmosphere or optical fibers, and the large divergence that high-order OAM modes experience. While the use of non-orthogonal modes may offer a way to circumvent the divergence of high-order OAM fields, artificial intelligence (AI) algorithms have shown promise for solving the mode-distortion issue. Unfortunately, current AI-based algorithms make use of large-amount data-handling protocols that generally lead to large processing time and high power consumption. Here we show that a low-power, low-cost image sensor can itself act as an artificial neural network that simultaneously detects and reconstructs distorted OAM-carrying beams. We demonstrate the capabilities of our device by reconstructing (with a 95$\%$ efficiency) individual Vortex, Laguerre-Gaussian (LG) and Bessel modes, as well as hybrid (non-orthogonal) coherent superpositions of such modes. Our work provides a potentially useful basis for the development of low-power-consumption, light-based communication devices.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC