Optica Open
Browse

Soft-Matter-Based Topological Vertical Cavity Surface Emitting Lasers

Download (5.58 kB)
preprint
posted on 2024-10-18, 16:00 authored by Yu Wang, Shiqi Xia, Jingbin Shao, Qun Xie, Donghao Yang, Xinzheng Zhang, Irena Drevensek-Olenik, Qiang Wu, Zhigang Chen, Jingjun Xu
Polarized topological vertical cavity surface-emitting lasers (VCSELs), as stable and efficient on-chip light sources, play an important role in the next generation of optical storage and optical communications. However, most current topological lasers demand complex design and expensive fabrication processes, and their semiconductor-based structures pose challenges for flexible device applications. By use of an analogy with two-dimensional Semenov insulators in synthetic parametric space, we design and realize a one-dimensional optical superlattice (stacked polymerized cholesteric liquid crystal films and Mylar films), thereby we demonstrate a flexible, low threshold, circularly polarized topological VCSEL with high slope efficiency. We show that such a laser maintains a good single-mode property under low pump power and inherits the transverse spatial profile of the pump laser. Thanks to the soft-matter-based flexibility, our topological VCSEL can be "attached" to substrates of various shapes, enabling desired laser properties and robust beam steering even after undergoing hundreds of bends. Our results may find applications in consumer electronics, laser scanning and displays, as well as wearable devices.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC