Optica Open
Browse

Solid-State High-Order Harmonic Generation: Emerging Frontiers in Ultrafast and Quantum Light Science

Download (5.58 kB)
preprint
posted on 2025-10-21, 16:00 authored by Marcelo F. Ciappina
High-order harmonic generation (HHG) in solids has emerged as a versatile platform for exploring ultrafast and quantum-coherent phenomena in condensed matter. Recent advances reveal Berry-phase and topological effects in harmonic emission, strong-field control of excitons and lattice motion, the generation of nonclassical light states driven by quantum and squeezed fields, and the emergence of orbital-angular-momentum transfer in solid-state high-harmonic generation. Nanostructured and hybrid plasmonic-semiconductor platforms enable enhanced and spectrally tunable HHG, while interferometric and cryogenic setups allow attosecond-resolved phase measurements. On the theoretical side, multiband and topological models incorporating dephasing, propagation, and electron-hole coherence effects have deepened our understanding of the interplay between interband and intraband dynamics. These developments establish solid-state HHG as a bridge between ultrafast spectroscopy, quantum optics, and material science, paving the way toward quantum-engineered attosecond sources and coherent control of light-matter interactions in solids.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC