arXiv.svg (5.58 kB)
Soliton pulse pairs at multiple colors in normal dispersion microresonators
preprint
posted on 2023-01-28, 17:01 authored by Zhiquan Yuan, Maodong Gao, Yan Yu, Heming Wang, Warren Jin, Qing-Xin Ji, Avi Feshali, Mario Paniccia, John Bowers, Kerry VahalaSoliton microcombs are helping to advance the miniaturization of a range of comb systems. These combs mode lock through the formation of short temporal pulses in anomalous dispersion resonators. Here, a new microcomb is demonstrated that mode locks through the formation of pulse pairs in normal-dispersion coupled-ring resonators. Unlike conventional microcombs, pulses in this system cannot exist alone, and instead must phase lock in pairs to form a bright soliton comb. Also, the pulses can form at recurring spectral windows and the pulses in each pair feature different optical spectra. This pairwise mode-locking modality extends to higher dimensions and we demonstrate 3-ring systems in which 3 pulses mode lock through alternating pairwise pulse coupling. The results are demonstrated using the new CMOS-foundry platform that has not previously produced bright solitons on account of its inherent normal dispersion. The ability to generate multi-color pulse pairs over multiple rings is an important new feature for microcombs. It can extend the concept of all-optical soliton buffers and memories to multiple storage rings that multiplex pulses with respect to soliton color and that are spatially addressable. The results also suggest a new platform for the study of quantum combs and topological photonics.