arXiv.svg (5.58 kB)
Download fileSpace-time analogy and its application to design schemes borrowed from Fourier optics for processing ultrafast optical signals
preprint
posted on 2023-01-10, 02:42 authored by R. N. ShakhmuratovSquare-wave pulse generation with a variable duty ratio can be realized with the help of ideas of Talbot array illuminators formulated for binary phase gratings. A binary temporal phase modulation of CW laser field propagating through a group-delay-dispersion circuit of the fractional Talbot length $P/Q$ results in a well defined sequence of square-wave-form pulses. When $P=1$ a duty ratio of the pulses $D$ is $1/2$ for $Q=4$ and $1/3$ for $Q=3$ and 6. Maximum intensity of the pulses doubles and triples compared to the CW intensity for $D=1/2$ and $1/3$, respectively. These pulses can be used for return-to-zero laser field modulation in optical fiber communication. For $D=1/3$ extra features between the pulses are found originating from a finite rise and drop time of phase in a binary phase modulation. Similar effect as a benefit of the time-space analogy is predicted for binary phase gratings and interpreted as gleams produced by imperfect edges of the components of the rectangular phase gratings.