Optica Open
Browse

Spatial-Wavelength Multiplexing Reliable Photonic Integrated General-Purpose Analog Computing System

Download (5.58 kB)
preprint
posted on 2025-05-09, 16:01 authored by Tao Zhu, Bowen Zhu, Shicheng Zhang, Keren Li, Xianchen Wu, Yazhi Pi, Jie Yan, Daigao Chen, Bingli Guo, Xi Xiao, Lei Wang, Xiaochuan Xu, Xuwei Xue, Shanguo Huang, Zizheng Cao, Shaohua Yu
In the "post-Moore era", the growing challenges in traditional computing have driven renewed interest in analog computing, leading to various proposals for the development of general-purpose analog computing (GPAC) systems. In this work, we present a GPAC prototype featuring a silicon photonic chip designed for fully optical analog computation. This system leverages on-chip multi-channel architectures to enable parallel processing and utilizes wavelength-division multiplexing to significantly enhance computational capacity. In addition, we have developed an error-correction algorithm to monitor processing operations in real time, ensuring the reliability of computational results. Experimentally, we demonstrate the system's capability to solve ordinary differential equations and its applications in communications, microwave photonics, and image processing. The chip's energy efficiency is evaluated to reach up to 227 tera-operations per second per watt. Through this research, we provide a novel hardware framework and innovative directions for analog photonic computing.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC