Optica Open
Browse
arXiv.svg (5.58 kB)

Spatially-coded Fourier ptychography: flexible and detachable coded thin films for quantitative phase imaging with uniform phase transfer characteristics

Download (5.58 kB)
preprint
posted on 2023-12-01, 17:00 authored by Ruihai Wang, Liming Yang, Yujin Lee, Kevin Sun, Kuangyu Shen, Qianhao Zhao, Tianbo Wang, Xincheng Zhang, Jiayi Liu, Pengming Song, Guoan Zheng
Fourier ptychography (FP) is an enabling imaging technique that produces high-resolution complex-valued images with extended field coverages. However, when FP images a phase object with any specific spatial frequency, the captured images contain only constant values, rendering the recovery of the corresponding linear phase ramp impossible. This challenge is not unique to FP but also affects other common microscopy techniques -- a rather counterintuitive outcome given their widespread use in phase imaging. The underlying issue originates from the non-uniform phase transfer characteristic inherent in microscope systems, which impedes the conversion of object wavefields into discernible intensity variations. To address this challenge, we present spatially-coded Fourier ptychography (scFP), a new method that synergizes FP with spatial-domain coded detection for true quantitative phase imaging. In scFP, a flexible and detachable coded thin film is attached atop the image sensor in a regular FP setup. The spatial modulation of this thin film ensures a uniform phase response across the entire synthetic bandwidth. It improves reconstruction quality and corrects refractive index underestimation issues prevalent in conventional FP and related tomographic implementations. The inclusion of the coded thin film further adds a new dimension of measurement diversity in the spatial domain. The development of scFP is expected to catalyse new research directions and applications for phase imaging, emphasizing the need for true quantitative accuracy with uniform frequency response.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC