Optica Open
arXiv.svg (5.58 kB)

Spatially homogeneous few-cycle compression of Yb lasers via all-solid-state free-space soliton management

Download (5.58 kB)
posted on 2023-06-08, 12:47 authored by Bingbing Zhu, Zongyuan Fu, Yudong Chen, Sainan Peng, Cheng Jin, Guangyu Fan, Sheng Zhang, Shunjia Wang, Hao Ru, Chuanshan Tian, Yihua Wang, Henry Kapteyn, Margaret Murnane, Zhensheng Tao
The high power and variable repetition rate of Yb femtosecond lasers make them very attractive for ultrafast science. However, for capturing sub-200 fs dynamics, efficient, high-fidelity, and high-stability pulse compression techniques are essential. Spectral broadening using an all-solid-state free-space geometry is particularly attractive, as it is simple, robust, and low-cost. However, spatial and temporal losses caused by spatio-spectral inhomogeneities have been a major challenge to date, due to coupled space-time dynamics associated with unguided nonlinear propagation. In this work, we use all-solid-state free-space compressors to demonstrate compression of 170 fs pulses at a wavelength of 1030nm from a Yb:KGW laser to ~9.2 fs, with a highly spatially homogeneous mode. This is achieved by ensuring that the nonlinear beam propagation in periodic layered Kerr media occurs in soliton modes and confining the nonlinear phase through each material layer to less than 1.0 rad. A remarkable spatio-spectral homogeneity of ~0.87 can be realized, which yields a high efficiency of >50% for few-cycle compression. The universality of the method is demonstrated by implementing high-quality pulse compression under a wide range of laser conditions. The high spatiotemporal quality and the exceptional stability of the compressed pulses are further verified by high-harmonic generation. This work represents the highest efficiency and the best spatio-spectral quality ever achieved by an all-solid-state free-space pulse compressor for few-cycle-pulse generation.



This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics