Optica Open
Browse

Spectroscopic localization of atomic sample plane for precise digital holography

Download (5.58 kB)
preprint
posted on 2023-01-10, 02:57 authored by Jian Zhao, Yuzhuo Wang, Xing Huang, Saijun Wu
In digital holography, the coherent scattered light fields can be reconstructed volumetrically. By refocusing the fields to the sample planes, absorption and phase-shift profiles of sparsely distributed samples can be simultaneously inferred in 3D. This holographic advantage is highly useful for spectroscopic imaging of cold atomic samples. However, unlike (e.g., biological samples or solid particles), the quasi-thermal atomic gases under laser-cooling are typically featureless without sharp boundaries, invalidating a class of standard numerical refocusing methods. Here, we extend the refocusing protocol based on the Gouy phase anomaly for small phase objects to free atomic samples. With a prior knowledge on a coherent spectral phase angle relation for cold atoms that is robust against probe condition variations, an ``out-of-phase'' response of the atomic sample can be reliably identified, which flips the sign during the numeric back-propagation across the sample plane to serve as the refocus criterion. Experimentally, we determine the sample plane of a laser-cooled $^{39}$K gas released from a microscopic dipole trap, with a $\delta z\approx 1~{\rm \mu m}$$\ll 2\lambda_p/{\rm NA}^2$ axial resolution, with a NA=0.3 holographic microscope at $\lambda_p=770~$nm probe wavelength.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC