Optica Open
Browse

Spontaneous photon-pair generation at the nanoscale

Download (5.58 kB)
preprint
posted on 2023-11-30, 18:05 authored by Giuseppe Marino, Alexander S. Solntsev, Lei Xu, Valerio F. Gili, Luca Carletti, Alexander N. Poddubny, Mohsen Rahmani, Daria A. Smirnova, Haitao Chen, Aristide Lemaître, Guoquan Zhang, Anatoly V. Zayats, Costantino De Angelis, Giuseppe Leo, Andrey A. Sukhorukov, Dragomir N. Neshev
Optical nanoantennas have shown a great capacity for efficient extraction of photons from the near to the far-field, enabling directional emission from nanoscale single-photon sources. However, their potential for the generation and extraction of multi-photon quantum states remains unexplored. Here we demonstrate experimentally the nanoscale generation of two-photon quantum states at telecommunication wavelengths based on spontaneous parametric down-conversion in an optical nanoantenna. The antenna is a crystalline AlGaAs nanocylinder, possessing Mie-type resonances at both the pump and the bi-photon wavelengths and when excited by a pump beam generates photonpairs with a rate of 35 Hz. Normalized to the pump energy stored by the nanoantenna, this rate corresponds to 1.4 GHz/Wm, being one order of magnitude higher than conventional on-chip or bulk photon-pair sources. Our experiments open the way for multiplexing several antennas for coherent generation of multi-photon quantum states with complex spatial-mode entanglement and applications in free-space quantum communications and sensing.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC