Optica Open
Browse

Squeezed state evolution and entanglement in lossy coupled resonator optical waveguides

Download (5.58 kB)
preprint
posted on 2023-11-30, 17:30 authored by Hossein Seifoory, Marc. M. Dignam
We investigate theoretically the temporal evolution of a squeezed state in lossy coupled-cavity systems. We present a general formalism based upon the tight binding approximation and apply this to a two-cavity system as well as to a coupled resonator optical waveguide in a photonic crystal. We derive analytical expressions for the number of photons and the quadrature noise in each cavity as a function of time when the initial excited state is a squeezed state in one of the cavities. We also analytically evaluate the time dependant cross correlation between the photons in different cavities to evaluate the degree of quantum entanglement. We demonstrate the effects of loss on the properties of the coupled-cavity systems and derive approximate analytic expressions for the maximum photon number, maximum squeezing and maximum entanglement for cavities far from the initially excited cavity in a lossless coupled resonator optical waveguide.

History

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC