Optica Open
Browse

Stabilization of one-dimensional Townes solitons by spin-orbit coupling in a dual-core system

Download (5.58 kB)
preprint
posted on 2023-11-30, 19:59 authored by Elad Shamriz, Zhaopin Chen, Boris A. Malomed
It was recently demonstrated that two-dimensional Townes solitons (TSs) in two-component systems with cubic self-focusing, which are normally made unstable by the critical collapse, can be stabilized by linear spin-orbit coupling (SOC), in Bose-Einstein condensates and optics alike. We demonstrate that one-dimensional TSs, realized as optical spatial solitons in a planar dual-core waveguide with dominant quintic self-focusing, may be stabilized by SOC-like terms emulated by obliquity of the coupling between cores of the waveguide. Thus, SOC offers a universal mechanism for the stabilization of the TSs. A combination of systematic numerical considerations and analytical approximations identifies a vast stability area for skew-symmetric solitons in the system's main (semi-infinite) and annex (finite) bandgaps. Tilted ("moving") solitons are unstable, spontaneously evolving into robust breathers. For broad solitons, diffraction, represented by second derivatives in the system, may be neglected, leading to a simplified model with a finite bandgap. It is populated by skew-antisymmetric gap solitons, which are nearly stable close to the gap's bottom.

History

Related Materials

Disclaimer

This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.

Usage metrics

    Categories

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC