posted on 2023-01-12, 15:45authored byLu Qin, Chao Hang, Boris A. Malomed, Guoxiang Huang
Bound states of solitons, alias soliton molecules (SMs), are well known in one-dimensional (1D) systems, while making stable bound states of multidimensional solitons is a challenging problem because of the underlying instabilities. Here we propose a scheme for the creation of stable (2+1)D and (3+1)D optical SMs in a gas of cold Rydberg atoms, in which electromagnetically induced transparency (EIT) is induced by a control laser field. We show that, through the interplay of the EIT and the strong long-range interaction between the Rydberg atoms, the system gives rise to giant nonlocal Kerr nonlinearity, which in turn supports stable (2+1)D spatial optical SMs, as well as ring-shaped soliton necklaces, including rotating ones. They feature a large size, low generation power, and can be efficiently manipulated by tuning the nonlocality degree of the Kerr nonlinearity. Stable (3+1)D spatiotemporal optical SMs, composed of fundamental or vortex solitons, with low power and ultraslow propagation velocity, can also be generated in the system. These SMs can be stored and retrieved through the switching off and on of the control laser field. The findings reported here suggest applications to data processing and transmission in optical systems.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.