posted on 2023-11-30, 21:07authored byJin Hong, Huimin Wen, Jiajing He, Jingquan Liu, Yaping Dan, Jens W. Tomm, Fangyu Yue, Junhao Chu, Chungang Duan
Silicon-based light sources including light-emitting diodes (LEDs) and laser diodes (LDs) for information transmission are urgently needed for developing monolithic integrated silicon photonics. Silicon doped by ion implantation with erbium ions (Er$^{3+}$) is considered a promising approach, but suffers from an extremely low quantum efficiency. Here we report an electrically pumped superlinear emission at 1.54 $\mu$m from Er/O-doped silicon planar LEDs, which are produced by applying a new deep cooling process. Stimulated emission at room temperature is realized with a low threshold current of ~6 mA (~0.8 A/cm2). Time-resolved photoluminescence and photocurrent results disclose the complex carrier transfer dynamics from the silicon to Er3+ by relaxing electrons from the indirect conduction band of the silicon. This picture differs from the frequently-assumed energy transfer by electron-hole pair recombination of the silicon host. Moreover, the amplified emission from the LEDs is likely due to a quasi-continuous Er/O-related donor band created by the deep cooling technique. This work paves a way for fabricating superluminescent diodes or efficient LDs at communication wavelengths based on rare-earth doped silicon.
History
Disclaimer
This arXiv metadata record was not reviewed or approved by, nor does it necessarily express or reflect the policies or opinions of, arXiv.